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Abstract

Modern interconnects often have programmable proces-
sors in the network interface that can be utilized to offload
communication processing from host CPU. In this paper, we
explore different schemes to support collective operations
at the network interface and propose a new collective pro-
tocol. With barrier as an initial case study, we have demon-
trated that much of the communication processing can be
greatly simplified with this collective protocol. Accordingly,
we have designed and implemented efficient and scalable
NIC-based barrier operations over two high performance
interconnects, Quadrics and Myrinet.
Our evaluation shows that, over a Quadrics cluster of 8

nodes with ELan3 Network, the NIC-based barrier opera-
tion achieves a barrier latency of only 5.60µs. This result
is a 2.48 factor of improvement over the Elanlib tree-based
barrier operation. Over a Myrinet cluster of 8 nodes with
LANai-XP NIC cards, a barrier latency of 14.20µs over 8
nodes is achieved. This is a 2.64 factor of improvement over
the host-based barrier algorithm. Furthermore, an analyti-
cal model developed for the proposed scheme indicates that
a NIC-based barrier operation on a 1024-node cluster can
be performed with only 22.13µs latency over Quadrics and
with 38.94µs latency over Myrinet. These results indicate
the potential for developing high performance communica-
tion subsystems for next generation clusters.

1. Introduction
Barrier is a commonly used collective operation in par-

allel and distributed programs. Message passing standards,
such as MPI [13], often have the barrier operation in-
cluded as a part of their specifications. In the function
MPI Barrier(), while processes are performing the barrier
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communication and waiting for its completion, no other
computation can be performed. So it is important to min-
imize the amount of time spent on waiting for the barrier.
The efficiency of barrier also affects the granularity of a
parallel application. To support fine-grained parallel ap-
plications, an efficient barrier primitive must be provided.
Some modern interconnects, such as QsNet [15] and Infini-
Band [5], provide hardware broadcast primitives that can
be utilized to support an efficient barrier operation. How-
ever, hardware broadcast primitives often have their lim-
itations. For example, Quadrics hardware broadcast re-
quires that all the processes are located on a contiguous set
of nodes and also well synchronized during its computa-
tion to achieve high performance barrier operations; Infini-
Band hardware broadcast is not reliable. Other intercon-
nects, such as Myrinet, do not have hardware broadcast and
provide unicast communication along point-to-point links.
Thus, a general barrier operation is often implemented on
top of point-to-point communication.
Earlier research has been done to use programmable pro-

cessors to support efficient collective operations [18, 14, 3].
Among them, Buntinas et. al. [3] has explored NIC-based
barrier overMyrinet/GM. In that study, the NIC takes an ac-
tive role in detecting arrived barrier messages and triggering
the next barrier messages. This greatly reduces round-trip
PCI bus traffic and host CPU involvement in a barrier op-
eration, thereby improving the barrier latency. However,
much of the communication processing for barrier mes-
sages is still implemented on top of the NIC’s point-to-point
communication processing. The benefits of NIC-based bar-
rier have been exposed, but only to a certain extent. And
the scheme has not been generalized to expose the benefits
of NIC programmability over other networks, for example,
Quadrics. So it remains an open challenge to gain more in-
sights into the related communication processing and pro-
pose an efficient, and generally applicable scheme in order
to provide maximum benefits to NIC-based barrier opera-
tions.
In this paper, we take on this challenge. We start

with discussing the characteristics of NIC-based barrier op-



erations. We then examine the communication process-
ing tasks for point-to-point operations, including queuing,
bookkeeping, packetizing and assembly, flow control and
error control, etc. Many of these tasks are redundant for
collective operations. We then propose a novel NIC-based
collective protocol which performs queuing, bookkeeping,
packetizing and error control tasks in a collective manner
and eliminates the redundancy wherever possible. With
barrier as an initial case study, we have demonstrated that
much of the communication processing can be greatly sim-
plified. Accordingly, the proposed scheme is implemented
over Myrinet. Furthermore, a similar NIC-based barrier is
implemented over Quadrics.
Our evaluation has shown that, over a Quadrics cluster

of 8 nodes with ELan3 Network, the NIC-based barrier op-
eration achieves a barrier latency of 5.60µs. This result is
a 2.48 factor of improvement over the Elanlib tree-based
barrier operation. Over a Myrinet cluster of 8 nodes with
LANai-XP NIC cards, a barrier latency of 14.20µs over 8
nodes is achieved. This is a 2.64 factor of improvement
over the host-based barrier algorithm. Our evaluation has
also shown that, over a 16-nodeMyrinet cluster with LANai
9.1 cards, the NIC-based barrier operation achieves a bar-
rier latency of 25.72us, a 3.38 factor of improvement com-
pared to the host-based algorithm. Furthermore, our analyt-
ical model suggests that NIC-based barrier operations could
achieve a latency of only 22.13µs and 38.94µs, respectively
over a 1024-node Quadrics and Myrinet cluster.
The rest of the paper is structured as follows. In the next

section, we explore different NIC-based barrier algorithms
and describe the motivation for the NIC-based barrier with
a separate collective protocol. Following that, we describe
in detail the design issues of the barrier algorithm in the
proposed NIC-based collective protocol. Then in Section 4
we give an overview of Quadrics/Elan andMyrinet/GM. An
overview of the barrier algorithms considered for our im-
plementation is provided in Section 5. In Sections 6 and 7,
we describe our NIC-based barrier operations over Myrinet
and Quadrics. The performance results are provided in Sec-
tion 8. Finally, we conclude the paper in Section 9.

2. Motivation
In this section, we describe general ideas of previous re-

search [3, 4] on NIC-based barrier operations over point-
to-point communication. In addition, we explore different
ideas to support collective communication and the motiva-
tion for NIC-based barrier operations with a separate col-
lective protocol.

2.1. Previous Research on NIC-Based Barrier
Buntinas et. al. [3, 4] have studied the benefits of off-

loading barrier operation to the Myrinet Control Program
(MCP). With the previous NIC-based barrier scheme, the
NIC takes an active role in performing the barrier opera-
tion. Host CPU is not involved in the intermediate steps
of a barrier operation. The number of round-trip messages
across the PCI bus is reduced. However, further investiga-

tion into this implementation reveals that it builds the NIC-
based barrier operation simply on top of the point-to-point
communication protocol running on the NIC. The left di-
agram in Fig. 1 shows how the barrier implementation fits
into a user-level protocol (in this case, MCP). With this ap-
proach, much of the communication processing is redun-
dant for the nature of barrier operations. It still remains to
be examined howmuch redundant processing is done. Like-
wise, it is not analyzed how much benefits there are if one
can eliminate the redundancywith a separate collective pro-
tocol.
2.2. The Point-to-Point Communication Protocol at

the NIC
An overview to the communication processing per-

formed by theMyrinet Control Program is presented in Sec-
tion 4.2. In a NIC control program for a general user-level
protocol, this processing can be classified into the follow-
ing categories of tasks: request queuing, request bookkeep-
ing, data packetization, data assembly, flow control and er-
ror control. These tasks are usually well-tuned for point-
to-point communication. But to achieve high performance
NIC-based collective operations, much of these tasks can be
done in a collective manner. This can lead to simplified and
reduced processing. Thus a separate communication pro-
tocol for the NIC-based collective operations is needed to
maximize the benefits.
2.3. Where to Provide Support for Collective Com-

munication?
The performance of the resulting collective operations

are often limited by the underlying user-level protocols. If
the user-level protocols only provide point-to-point commu-
nication semantics, the programming models have to lay
their collective support on top of that. The resulting per-
formance may not be ideal. The NIC-based collective op-
erations can help expose the best performance from the un-
derlying network to these developers. However, as shown
in the left diagram of Fig. 1, the earlier NIC-based barrier
implementation intercepts the requests for the barrier oper-
ations and directly delivers the barrier messages. No efforts
have been put to examine how the communication process-
ing tasks are undertaken by the NICs for these regular mes-
sages and how to reduce them for barrier operations. Thus
this direct scheme of offloading the barrier operation does
not achieve maximum benefits.

3. A Proposed Scheme to Support NIC-based
Barrier Operations
In this section, we propose a novel scheme with a NIC-

based collective protocol to eliminate the redundancy de-
scribed in the last section. Then with barrier operations
as the focus in this paper, we describe how the benefits of
NIC-based barrier operations can be maximized with this
scheme. The associated design issues are also discussed.
We propose a separate protocol at the NIC to perform the

communication processing tasks related to collective opera-
tions. As shown in Fig. 1, a set of API’s for collective opera-
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tions can be provided at the user-level. Then the support for
these collective operations can be implemented at the NIC.
If there is any collective operation that cannot be supported
efficiently by the NIC, its implementation can still be laid
over point-to-point protocols. Basically, our scheme aims
to provide a protocol that collectively performs the message
passing tasks necessary for collective operations. For each
collective operation, the critical step is to identify the tasks
that can be more efficiently put into the collective proto-
col. In the case of a NIC-based barrier operation, we have
identified the following tasks that need to be included in the
NIC-based collective protocol.

Queuing
In a parallel system, a NIC must handle multiple com-
munication requests to a peer NIC and also requests
to multiple different peer NICs. Each request must go
through multiple queues and be scheduled before the
message can be transmitted. Thus for a barrier, the ar-
rived message may not immediately lead to the trans-
mission of the next message until the corresponding
request gets its turn in the relevant queues. This im-
poses unnecessary delays into the barrier operations.
If we can provide a separate queue for a particular pro-
cess group, its barrier messages can skip other queues
and get transmitted in a much faster manner.

Packetization and Assembly
The sender NICmust packetize the large messages and
allocate a send buffer for each of the packet. For that
the NIC has to wait for a send buffer to become avail-
able and fill up the packet with data before the mes-
saging takes place. Since all the information a barrier
message needs to carry along is an integer, if one can
utilize a dedicated send buffer for the barrier messages,
all these unnecessary waiting for a send buffer can also

be eliminated. At the receiver side, the received barrier
message also does not need to go through the queues
for data assembly, etc.

Bookkeeping
For each outstanding messaging request, the NIC must
perform bookkeeping functions to keep track of its sta-
tus of every packet transmitted on its behalf. This is
rather inefficient for a barrier operation, since there is
no data transmission involved. One can just provide
a bit vector to record whether all the messages for a
barrier operation are completed or not.

Flow/Error Control
Depending on the reliability feature of the underly-
ing network, the NIC control program may also need
to provide flow control and/or error control functions
to ensure reliability. The error control for point-to-
point messages is usually implemented with a form
of timeout/retransmission. Acknowledgments are re-
turned from the receivers to the senders. The NIC-
based barrier also provides opportunities to have an
efficient and simplified error control. For example,
we can eliminate all the acknowledgments and pro-
vide reliability with a receiver-driven retransmission
approach. When a barrier operation fails to complete
due to the missing of some barrier messages, NACKs
can be sent to the corresponding senders. Thus this
reduces the number of actual barrier messages by half
and can speed up the barrier operation.

4. Overview of Quadrics and Myrinet
In this section, we describe some background infor-

mation on two interconnects that provide programmable
NIC processors, Quadrics and Myrinet. Quadrics provides



hardware-level reliable message passing, while Myrinet
does not. The message passing reliability is left to the
communication protocol. Designing an efficient reliability
scheme is then critical to the performance of the communi-
cation protocol over such a network.

4.1. Quadrics and Elanlib
Quadrics network (QsNet) [15] provides low-latency,

high-bandwidth communication with its two building
blocks: a programmable Elan network interface card and
the Elite switch, which are interconnected in a fat-tree
topology. QsNet-II [1] has been released recently, but in
the scope of this paper, a Quadrics interconnect with Elan3
network interface cards. We are planning to extend similar
studies to QsNet-II once such an system becomes available
to us.
QsNet Programming Library – QsNet provides the

Elan and Elan3 libraries as the interface for its Elan3 net-
work [17]. At the Elan3 level, a process in a parallel job
is allocated a virtual process id (VPID). Interprocess com-
munication is supported by an efficient model: remote di-
rect memory access (RDMA). Elan3lib also provides a very
useful chained event mechanism, which allows one RDMA
descriptor to be triggered upon the completion of another
RDMA descriptor. A higher-level programming library,
Elanlib, extends Elan3lib with point-to-point, tagged mes-
sage passing primitives (called Tagged Message Ports or
Tports) and support for collective operations.
Barrier in Elanlib – Elanlib provides two barrier func-

tions, elan gsync() and elan hgsync(). The latter takes ad-
vantages of the hardware broadcast primitive and provides a
very efficient and scalable barrier operation [16]. However,
it requires that the calling processes are well synchronized
in their stages of computation [16]. Otherwise, it falls back
on the elan gsync() to complete the barrier with a tree-based
gather-broadcast algorithm.

4.2. Myrinet and GM
Myrinet is a high-speed interconnect technology using

wormhole-routed crossbar switches to connect all the NICs.
GM is a user-level communication protocol that runs over
the Myrinet [2] and provides a reliable ordered delivery of
packets with low latency and high bandwidth. The basic
send/receive operation works as follows.
Sending aMessage – To send a message, a user applica-

tion generates a send descriptor, referred to as a send event
in GM, to the NIC. The NIC translates the event to a send to-
ken (a form of send descriptor that NIC uses), and appends
it to the send queue for the desired destination. With out-
standing send tokens to multiple destinations, the NIC pro-
cesses the tokens to different destinations in a round-robin
manner. To send a message for a token, the NIC also has
to wait for the availability of a send packet, i.e., the send
buffer to accommodate the data. Then the data is DMAed
from the host buffer into the send packet and injected into
the network. The NIC keeps a send record of the sequence
number and the time for each packet it has sent. If the ac-
knowledgment is not received within the timeout period, the

sender will retransmit the packet. When all the send records
are acknowledged, the NIC will pass the send token back to
the host.
Receiving a Message – To receive a message, the host

provides some registered memory as the receive buffer by
preposting a receive descriptor. A posted receive descrip-
tor is translated into a receive token by the NIC. When
the NIC receives a packet, it checks the sequence number.
An unexpected packet is dropped immediately. For an ex-
pected packet, the NIC locates a receive token, DMAs the
packet data into the host memory, and then acknowledges
the sender. When all the packets for a message have been
received, the NIC will also generate a receive event to the
host process for it to detect the arrived message.

5. Overview of Barrier Algorithms
In this section, we give a brief introduction to general

barrier algorithms. Note that we focus on the algorithms for
the barrier operation on top of point-to-point communica-
tion. Barrier operations on top of hardware broadcast have
been studied in [16] and [9].

5.1. General Algorithms
Without using hardware barrier/broadcast primitives, a

barrier operation typically requires the exchange of multi-
ple point-to-point messages between processes. Typically
it is implemented by one of the following three algorithms:
gather-broadcast [11], pairwise-exchange [8] and dissemi-
nation [9].

root

Broadcast

Gather

Fig. 2. Gather-Broadcast
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Fig. 3. Pairwise-Exchange

Gather-Broadcast – As shown in Fig. 2, processes in-
volved in a barrier form a tree-based topology. All the bar-
rier messages are propagated up the tree and combined to
the root, which in turn broadcasts a message down the tree
to have other processes exit the barrier. For a group of N
participating nodes, this algorithm takes (2 logd N ) steps,
where d is the degree of the tree.
Pairwise-Exchange – This is a recursive doubling al-

gorithm used in the popular MPICH [8] distribution. As
shown in Fig. 3, at step m, process i and j, where j = i∧2m,
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are paired up and exchangemessages. For a group ofN par-
ticipating nodes, this algorithm takes log2 N steps, whenN
is a power of two. IfN is not a power of two, two additional
steps needs to be performed. Let M be the largest power of
2 and less than N. At the very beginning, process i sends a
message to processes j, where i ≥ 2m and j = i−2m. Then
the low ranked M processes perform pairwise exchange for
the barrier. At the very end, process j notifies process i to
exit the barrier. This algorithm takes (%log2 N& + 2) steps
for non-power of two number of nodes.
Dissemination – This dissemination algorithm is also

described in [12]. As shown in Fig. 4, in step m, pro-
cess i sends a barrier message to process j, where j =
(i + 2m)modN . Essentially, barrier messages are dissem-
inated around processes so that each process is able to col-
lect the barrier information from its left 2m+1 processes by
step m. This algorithm takes 'log2 N( steps, irrespective of
whether N is a power of two or not.
5.2. Choosing the Right Algorithm
From the earlier description, it is clear that the gather-

broadcast algorithm requires more steps for a barrier op-
eration. Buntinas et. al. [3, 4] also have found that the
pairwise-exchange algorithm generally performs better than
the gather-broadcast algorithm. Thus for the proposed NIC-
based barrier in this paper, we have chosen to implement
and compare the pairwise-exchange and dissemination al-
gorithms.

6. Implementation of the Proposed NIC-Based
Barrier over Myrinet
In this section, we describe the NIC-based barrier over

Myrinet/GM.We have explored many of the challenging is-
sues in our earlier work with GM-1.2.3 [3, 4]. As having
discussed in Section 3, we choose to create a separated pro-
tocol to process the barrier messages. We believe that reim-
plementing the previous work over GM-2.0.3 would lead to
the same amount of relative improvement since the NIC-
based barrier is mainly dependent on the number of mes-
sages and processing steps to be performed. Solutions from
the earlier work for some of the challenges have been in-
corporated into this new protocol. Other challenging issues
related to the new barrier protocol are described in this sec-
tion.

6.1. Queuing the Barrier Operations
As described in Section 4.2, MCP processes the send

tokens to different destinations in a round robin fashion.
Send tokens to the same destination are processed in a FIFO
manner. So the send tokens for barrier operations must go

throughmultiple queues before their messages can be trans-
mitted. This is enforced to the initial barrier message (e.g.,
in Step 1 of the pairwise-exchange algorithm) and also the
barrier message that needs to be transmitted immediately
when an earlier barrier message arrives. It is rather ineffi-
cient to have the NIC-based barrier operations put up with
so much waiting. We created a separate queue for each
group of processes, and enqueued only one send token for
every barrier operation. Then the barrier messages do not
have to go through the queues for multiple destinations.
With this approach, the send token for the current barrier
operation is always located at the front of its queue. Both
the initial barrier message and the ones that need to be trig-
gered later no longer need to go through the queues for the
corresponding destinations.

6.2. Packetizing the Barrier Messages
Within the Myrinet Control Program, to send any mes-

sage, the sender NIC must wait for a send packet to become
available and fill up the packet with data. So to complete
a barrier operation, it is inevitable for the sender NIC to
go through multiple rounds of allocating, filling up and re-
leasing the send packets. Since all the information a bar-
rier message needs to carry along is an integer, it is much
more efficient if a static send packet can be utilized to trans-
mit this integer and avoid going through multiple rounds of
claiming/releasing the send packets.
This static send packet can be very small since it only

carries an integer. One can allocate an additional short send
packet for each group of processes. However, there is a
static send packet to each peer NIC in MCP, which is used
for fast transmission of ACKs. We pad this static packet
with an extra integer and utilize it in our implementation.
With this approach, all the packetizing (including pack-
ets claiming and releasing) needed for transmitting regular
messages is avoided for the barrier messages.

6.3. Bookkeeping and Error Control for Barrier
Messages

TheMyrinet Control Program provides bookkeeping and
error control for each packet that has been transmitted. This
is to ensure the reliable delivery of packets. One acknowl-
edgment must be returned by the receiver in order for the
sender to release the bookkeeping entries, i.e., a send record
in MCP. When a sender NIC fails to receive the ACK within
a timeout period specified in the send record, it retrans-
mits the packet. Besides creating multiple send records and
keeping track of them, this also generates twice as many
packets as the number of barrier messages. It is desirable
to design a better way to provide the bookkeeping and er-
ror control for the barrier operations based on its collective
nature.
For the bookkeeping purpose, we create only a send

record for a barrier operation. Within the send record, a bit
vector is provided to keep track of the list of barrier mes-
sages. When the barrier operation starts, a time-stamp is
also created along with the send record. In addition, an ap-
proach called receiver-driven retransmission is provided to



ensure reliable delivery of barrier messages. The receiver
NICs of the barrier messages no longer need to return ac-
knowledgments to the sender NICs. If any of the expected
barrier messages is not received within the timeout period, a
NACK will be generated from the receiver NIC to the corre-
sponding sender NIC. The sender NIC will then retransmit
the barrier message. Taken together, these enhancements
ensure the reliable delivery with the minimal possible over-
head and also reduce the number of total packets by half
compared to the reliability scheme for the regular messages.
Thus, it promises a more efficient solution for barrier oper-
ation.

7. Implementation of the Proposed NIC-Based
Barrier over Quadrics
In this section, we describe the NIC-based barrier over

Quadrics. Quadrics provides salient mechanisms to pro-
gram the NIC to support collective operations [14], e.g.,
threads running in the NIC or chained RDMA descriptors.
Thus it is rather convenient to implement NIC-based barrier
operation over Quadrics.
Since a barrier operation typically involves no data

transfer, all messages communicated between processes
just serve as a form of notification, indicating that the
corresponding processes have reached the barrier. Over
Quadrics/Elan, RDMA operation with no data transfer can
be utilized to fire a remote event, which serves as a kind of
notification to the remote process. Although Elan threads
can be created and executed by the thread processor to pro-
cess the events and chain RDMA operations together, an ex-
tra thread does increase the processing load to the Elan NIC.
With either pairwise-exchange or dissemination algorithm,
all that needed is to chain the multiple RDMA operations
together to support a NIC-based barrier.
We have chosen not to set up an additional thread to sup-

port NIC-based barrier, and instead, set up a list of chained
RDMA descriptors at the NIC from user-level. The RDMA
operations are triggered only upon the arrival of a remote
event except the very first RDMA operation, which the host
process triggers to initiate a barrier operation. The comple-
tion of the very last RDMA operation will trigger a local
event to the host process and signify the completion of the
barrier.

8. Performance Evaluation
In this section, we describe the performance evaluation

of our implementation. The experiments were conducted
on two clusters. One is a 16-node cluster of quad-SMP
700MHz Pentium-III, each equipped with 1GBDRAM and
66MHz/64bit PCI bus. This cluster is connected with both
a Myrinet 2000 network and a QsNet/Elan3 network (with
only 8 nodes). The Myrinet NICs have 133MHz LANai
9.1 processors and 2MB SRAM. The QsNet network con-
sists of a dimension two, quaternary fat tree switch, Elite-
16, and Elan3 QM-400 cards. The other system is a clus-
ter of 8-node SuperMicro SUPER P4DL6, each with dual
Intel Xeon 2.4GHz processors, 512MB DRAM, PCI-X

133MHz/64-bit bus. This cluster is only connected with
Myrinet 2000 network and NICs with 225MHz LANai-XP
processors and 2MB SRAM. Our NIC-based implementa-
tion over Myrinet is based on GM-2.0.3. The NIC-based
implementation over Quadrics is based on 5.2.7 quadrics
release and Elanlib-1.4.3-2.

8.1. NIC-Based Barrier over Myrinet
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We tested the latency of our NIC-based barrier opera-
tions and compared it to the host-based barrier operations.
Our tests were performed by having the processes execute
consecutive barrier operations. To avoid any possible im-
pact from the network topology and the allocation of nodes,
our tests were performed with random permutation of the
nodes. We observed only negligible variations in the perfor-
mance results. The first 100 iterations were used to warm up
the nodes. Then the average for the next 10,000 iterations
was taken as the latency. We compared the performance for
both the pairwise-exchange and dissemination algorithms.
Fig. 5 shows the barrier latencies of NIC-based and

host-based barriers for both algorithms over the 16-node
quad-700MHz cluster with LANai 9.1 cards. With ei-
ther pairwise-exchange (PE) or dissemination (DS) algo-
rithm, the NIC-based barrier operations reduce the barrier
latency, compared to the host-based barrier operations. The
pairwise-exchange algorithm tends to have a larger latency
over non-power of two number of nodes for the extra step
it takes. Over this 16-node cluster, a barrier latency of
25.72µs is achievedwith both algorithms. This is a 3.38 fac-
tor of improvement over host-based barrier operations. Us-
ing the direct NIC-based barrier scheme on the same clus-



ter, our earlier implementation [3, 4], achieved 1.86 factor
of improvement using LANai 7.2 cards. The earlier work
was done over GM-1.2.3 and not maintained as new ver-
sions of GM are released. We believe that the same amount
of relative improvement (1.86) would have been achieved if
the previous work was reimplemented over GM-2.0.3 since
the NIC-base barrier is mainly dependent on the number of
messages and processing steps to be performed. Although,
direct comparisons are not available, the difference in the
improvement factors over the common denominator (host-
based barrier operations) suggests that our new scheme pro-
vides a large amount of relative benefits.
Fig. 6 shows the barrier latencies of NIC-based and

host-based barriers for both algorithms over the eight-node
2.4GHz Xeon cluster with LANai-XP cards. Similarly,
the NIC-based barrier operation reduces the barrier latency
compared to the host-based barrier operation. Over this
eight node cluster, a barrier latency of 14.20µs is achieved
with both algorithms. This is a 2.64 factor of improvement
over the host-based implementation. The reason that the
factor of improvement becomes smaller on this cluster is
because this cluster has a much larger ratio of host CPU
speed to NIC CPU speed and also a faster PCI-X bus. Thus
the benefits from the reduced host involvement and I/O bus
traffic are smaller.
8.2. NIC-Based Barrier over Quadrics
Over an eight-node Quadrics/Elan3 cluster, we tested the

latency of our NIC-based barrier operations and compared
them to the elan hgsync() function provided in Elanlib,
The performance of elan hgsync() is tested with hardware
broadcast either enabled or disabled. Our tests were per-
formed by having the processes perform consecutive bar-
rier operations. The first 100 iterations were used to warm
up the nodes. Then the average for the next 10,000 itera-
tions was taken as the latency. The performance for both the
pairwise-exchange and dissemination algorithms are com-
pared to the elan hgsync() operation.
Fig. 7 shows the barrier latencies of NIC-based barrier

operations (shown as NIC-Barrier-DS and NIC-Barrier-PE
in the figure). The hardware barrier, elan hgsync() achieves
a barrier latency of 4.20µs. For a small number of nodes, the
hardware barrier performs worse than the NIC-based bar-
rier operation. This is because the hardware barrier is im-
plemented with an atomic test-and-set operation down the
NIC, which requires a higher number of network transac-
tions. For a large number of nodes, the hardware barrier per-
forms better but it requires that the involving processes be
well synchronized. This is hardly the case for parallel pro-
grams over large size clusters. Compared to tree-based bar-
rier operation elan gsync(), our NIC-based barrier operation
has a much reduced barrier latency. Note here that the hard-
ware broadcast primitive is disabled for a purely tree-based
barrier with elan gsync(). With non-power of two number
of nodes, the pairwise-exchange algorithm performs bet-
ter than the dissemination algorithm over Quadrics. This
is because Quadrics Elan cards is very efficient in coping
with the hot-spot RDMA operations [10], which reduces

the effects of the steps for registering and releasing non-
power two processes in a barrier operation. Over this eight
node cluster, a barrier latency of 5.60µs is achieved with
both algorithms. This is a 2.48 factor of improvement over
elan hgsync() when the hardware broadcast is not available.
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Fig. 8. Modeling of the Barrier Scalability
8.3. Scalability of the Proposed NIC-Based Barrier
As the size of parallel system reaches thousands, it is im-

portant for parallel applications to be able to run over larger
size systems and achieve corresponding parallel speedup.
This requires that the underlying programming models pro-
vide scalable communication, in particular, scalable collec-
tive operations. Thus it is important to find out how the
NIC-based barrier operations can scale over larger size sys-
tems.
Since the NIC-based barrier operations with the dissem-

ination algorithm exhibits a consistent behavior as the sys-
tem size increases, we choose its performance pattern to
model the scalability over different size systems. We for-
mulate the latency for NIC-based barrier with the following
equation.

Tbarrier = Tinit + ('log2 N( − 1) ∗ Ttrig + Tadj

In this equation, Tinit is the average NIC-based barrier la-
tency over two nodes, where each NIC only sends an initial
barrier message for the entire barrier operation; Ttrig is the
average time for every other message the NIC needs to trig-
ger when having received an earlier message; and Tadj is
provided as the adjustment factor. The adjustment factor is
needed to reflect the effects from other aspects of the NIC-
based barrier, e.g., reduced PCI bus traffic and the overhead
of bookkeeping. Through mathematical analysis, we have
derived Myrinet NIC-based barrier latency as Tbarrier =
3.60+ ('log2 N(− 1) ∗ 3.50+3.84 for 2.4GHz Xeon clus-



ters with LANai-XP cards, and Quadrics NIC-based barrier
latency as Tbarrier = 2.25 + ('log2 N( − 1) ∗ 2.32 − 1.00
for quad-700MHz clusters with Elan3 cards. As shown in
Fig. 8, the NIC-based barrier operations could achieve a
barrier latency of 22.13µs and 38.94µs over a 1024-node
Quadrics and Myrinet cluster of the same kinds, respec-
tively. In addition, it indicates that the NIC-based barrier
has potential for developing high performance and scalable
communication subsystems for next generation clusters.

9. Conclusions and Future Work
We have characterized general concepts and the bene-

fits of the NIC-based barrier algorithms on top of point-to-
point communication. We have then examined the commu-
nication processing for point-to-point operations, and pin-
pointed the relevant processing we can reduce for collec-
tive operations. Accordingly we have proposed a general
scheme for an efficient NIC-based barrier operation. The
proposed scheme has been implemented over both Quadrics
and Myrinet.
Our evaluation has shown that, over a Quadrics cluster

of 8 nodes with ELan3 Network, the NIC-based barrier op-
eration achieves a barrier latency of only 5.60µs. This re-
sult is a 2.48 factor of improvement over the Elanlib bar-
rier operation when Quadrics hardware-based broadcast is
not available. In addition, our evaluation has also shown
that, over a 16-node Myrinet cluster with LANai 9.1 cards,
the NIC-based barrier operation achieves a barrier latency
of 25.72us, which is a 3.38 factor of improvement com-
pared to the host-based algorithm. Furthermore, our analyt-
ical model suggests that NIC-based barrier operations could
achieve a latency of 22.13µs and 38.94µs, respectively over
a 1024-node Quadrics and Myrinet cluster.
As QsNet-II [1] and newer Myrinet interface cards be-

comes available to us, we are planning to investigate how
this NIC-based barrier algorithm can accommodate and
benefit from novel interconnect features. In future, we also
intend to study the benefits of this NIC-based barrier for dif-
ferent parallel programming models and applications built
on top of them. Specifically, we plan to incorporate this
barrier algorithm into LA-MPI [7] to provide a more ef-
ficient barrier operation. In addition, we intend to incor-
porate this NIC-based barrier, along with the NIC-based
broadcast [18] into a resourcemanagement framework (e.g.,
STORM [6]) to investigate their benefits in increasing the
resource utilization and the efficiency of resource manage-
ment. Furthermore, we intend to investigate whether other
collective communication operations, such as Allgather or
Alltoall could benefit from similar NIC-level implementa-
tions.
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